Unit Testing in Visual Studio 2022 Q

UTVS2022 | 2 Days @
Refactor 4

This two-day, instructor-led course provides students with the knowledge and skills to effectively

use Visual Studio 2022 to design, write, and run high-quality .NET unit tests. The course focuses on the applicable

features and capabilities of Visual Studio as it relates to unit testing and Test-Driven Development. This course

also introduces other popular unit testing tools and techniques and demonstrates how they integrate with Visual

Studio and your team’s development lifecycle.

Course Objectives
At course completion, students will have had exposure to ...

v" Why unit tests are critical to software quality v" Why write your tests first

v How unit tests and integration tests differ Practicing TDD within Visual Studio

v’ Popular .NET unit testing frameworks How to effectively refactor within TDD

v’ Popular JavaScript unit testing frameworks How to effectively refactor legacy code

v’ The anatomy of a unit test Practices for writing good unit tests

v The 3A pattern (Arrange, Act, Assert) Happy path vs. sad path testing

v’ Using Assert, StringAssert, and CollectionAssert Testing boundary conditions (Right-BICEP)
v’ Testing for expected exceptions Organizing tests and test assemblies

v’ Test class inheritance Test naming conventions (e.g. BDD)

v" Why and how to test internal APIs Why and how to analyze code coverage

v' MSTest, NUnit, and xUnit test projects Using code coverage as a metric

v' Using Test Explorer to manage your tests Data-driven (parameterized) unit tests

v Organizing tests using traits Concurrent testing using Live Unit Tests

v' Organizing tests using playlists Concurrent testing using NCrunch (3™ party)
v Running unit tests in parallel Testing difficult code with the use of doubles
v’ Parallelism by assembly, class, and method Using dummies, fakes, stubs, and mocks

v Running tests and managing test results Using Microsoft Fakes to test difficult code
v’ Viewing, grouping, and filtering tests and results Using third-party mocking libraries

v’ Creating and using a .runsettings file Using mogq to test difficult code

v’ Continuous testing in Visual Studio Generating MSTest unit tests with IntelliTest
v’ Test-Driven Development (TDD) as a design practice Debugging and profiling unit test code

NN N N N N N N N N N N N NN NN

Who Should Attend

This course is intended for current software development professionals who are involved with building high-
quality .NET applications. Students will use Visual Studio while learning how to design, write, and run unit tests.
They will also learn many relevant practices and techniques, such as TDD, refactoring, and how to test difficult
code using doubles, such as fakes, shims, and mocks.

Prerequisites
Before attending this course, a student should have experience or familiarity with:

v" The C# language v Application Lifecycle Management basics
v’ Visual Studio 2017, 2019, or 2022 v’ Their organization’s development lifecycle
v" Writing, debugging, and maintaining code v’ Building a high-quality software product

Accentient
———N




Unit Testing in Visual Studio 2022

UTVS2022 | 2 Days

Modules

Module 1: Unit Testing in .NET

This module introduces the concepts of unit testing and
how it is supported by the various unit testing
frameworks.

v/ What is (and isn’t) a unit test

v' Why write unit tests

v" NET unit testing frameworks

v" MSTest, NUnit, xUnit

v The anatomy of a unit test

v Writing and running your first unit test

Module 2: Unit Testing in Visual Studio

This module introduces Visual Studio test projects, Test
Explorer and other testing windows, and the practices
for effectively writing, running, and managing unit tests
and test results.

v’ Testing support in Visual Studio

v' MSTest, NUnit, and xUnit test projects

v’ Test Explorer and other windows

v" Writing and running unit tests in Visual Studio

v/ Managing a large number of tests and test results
v’ Organizing tests by grouping, filtering, and playlists
v’ Continuous testing in Visual Studio

Module 3: Test-Driven Development (TDD)

This module introduces Test Driven Development (TDD)
and the business case for why you should practice it.
Refactoring as well as a discussion of how to work with
legacy code are also part of this module.

v TDD overview and benefits

v’ Practicing TDD within Visual Studio

v’ Effectively refactoring code

v Working with legacy code

v' Using Codelens to support TDD and refactoring

Course Designer

Module 4: Writing Good Unit Tests

Just knowing how to write unit tests and being
disciplined in TDD is not enough. This module introduces
other practices for ensuring that you write high-quality
unit tests that cover more than just the happy path.

v’ Asking questions about your code

v’ Path testing (e.g. happy, sad, evil, etc.)
v’ Right BICEP testing

v’ Testing for expected exceptions

v Maintaining high-quality test code

v’ Unit test naming conventions (e.g. BDD)
v Organizing unit tests

Module 5: Leveraging Visual Studio

This module examines additional unit testing features
found in Visual Studio, including code coverage, data-
driven unit tests, and concurrent testing tools.

v Analyzing code coverage

v' Using code coverage as a metric

v’ Data-driven (parameterized) unit tests

v’ DataRow, DynamicData, and DataSource attributes
v’ Concurrent testing using Live Unit Testing

v’ Concurrent testing using NCrunch

Module 6: Testing Difficult Code
This module introduces tools and techniques for testing
difficult code, such as code with runtime dependencies.

v’ The need to isolate code under test

v" Doubles (dummies, stubs, fakes, and mocks)

v Microsoft Fakes framework (stubs and shims)
v" Comparing mocking frameworks

v Using moq .NET mocking framework

v’ Debugging and profiling slow-running unit tests
v’ Using IntelliTest with legacy code

This course was designed by Richard Hundhausen, Microsoft’s first Visual Studio ALM/DevOps MVP, Professional
Scrum Trainer, and experienced software developer. To see other developer courses, visit www.accentient.com.

Accentient
———N



http://www.accentient.com/

	Course Objectives
	Who Should Attend
	Prerequisites
	Modules
	Course Designer

